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Small amplitude, axially symmetric waves in a thin-walled viscoelastic tube con- 
taining a viscous compressible fluid are considered. Previous authors have found two 
modes of propagation for such waves but have studied them only in the low frequency, 
long wavelength limit. We show that there are infinitely many modes and study them 
at all frequencies. The appropriate dispersion equation was derived previously 
(Rubinow & Keller 1971) and analysed for an inviscid fluid. Now it is analysed for a 
viscous fluid. Asymptotic formulae for the propagation constant k are obtained for 
both low and high frequencies and for various ranges of the parameters characterizing 
the tube and the fluid. Special attention is paid to the case of a rigid tube and to para- 
meter values that characterize the flow of blood in mammalian arteries. I n  addition, 
numerical results are obtained which complement the asymptotic formulae. Graphs 
of the velocity c us. the frequency w are presented for various modes and for various 
ranges of the parameters. Transmission-line equations and formulae for the impedance 
and compliance of the fluid-tube system are obtained, together with asymptotic and 
numerical results. 

1. Introduction 
There are infinitely many modes of propagation for waves in fluid-filled elastic 

tubes, such as water pipes and blood vessels. However only the first two modes have 
been found by previous investigators, and then only in the low frequency, long wave- 
length limit. We have found the higher modes as well and studied all of them over the 
entire range of frequencies. In  doing so we have taken into account the viscosity and 
compressibility of the fluid, the elasticity and viscoelasticity of the tube wsll, and the 
external constraint son the wall. We have used both analytical and numei-ical means in 
our previous work (Rubinow & Keller 1971, to be referred to as I) .  There we presented 
results for axially symmetric modes in a thin-walled tube of circular cross-section con- 
taining an inviscid fluid. Here we do the same for a viscous fluid. 

The theoretical analysis of waves in fluid-filled elastic tubes was begun by Young 
(1808) and continued by Weber (1866)) R6sal (1876), Korteweg (1878), Lamb (1898), 
Womersley (1957) and many others. They were concerned with blood flow and the 
blood pressure pulse in mammalian arteries. For this application the low frequency, 
long wavelength approximation is usually valid and only the two lowest modes 
propagate, the others being evanescent. However even in this case the higher modes 
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play a role at junctions, bifurcations, bends, vaives, etc., as is well known from the 
theory of waveguides. At high frequencies the higher modes can propagate in any tube, 
Therefore they will occur in other cases of wave propagation in fluid-filled tubes. 

Since we shall examine all the modes a t  all frequencies, we shall incidentally recover 
the known results for the first two modes a t  low frequencies. But even for this case we 
shall obtain some new results, such as the low frequency behaviour of the second mode 
and the explicit dependence of the first two propagation speeds on the viscoelastic 
parameter of the material. We shall also clarify the confusion in the literature which 
results from the hitherto unrecognized non-uniform dependence of the propagation 
velocities upon the viscosity coefficient p and the angular frequency w a t  y = 0, w = 0. 
I n  addition we shall show that Womersley’s parameter aw is inadequate to character- 
ize waves except at low frequencies in large arteries. His approximation is not accurate 
for arterioles and capillaries even a t  low frequencies. We find instead that a t  both very 
low and very high frequencies the results depend upon the viscosity as well as upon aw. 

For the limiting case of a rigid tube we shall obtain high frequency asymptotic 
formulae for all the modes. The first two of these modes were found by Rayleigh and 
Helmholtz a t  low frequencies. For any tube, we shall present transmission-line 
equations with apparently new formulae for the impedance, compliance, etc. valid a t  
all frequencies, together with asymptotic expansions of them. These equations are 
useful in the study of blood flow (Rubinow & Keller 1968), where the average pro- 
perties over cross-sections are measured rather than the detailed velocity distribution. 

All of our results are derived for a tube which, in the absence of waves, is a circular 
cylindrical shell of constant thickness, made of a viscoelastic material and filled with a 
compressible viscous fluid a t  rest. The outer surface of the tube is assumed to  be par- 
tially constrained. I n  I we obtained axially symmetric wavelike solutions of the 
linearized equations and boundary conditions governing the motion of the fluid and 
the tube wall. These were the Navier-Stokes equations and the equations of visco- 
elast’icity respectively, together with continuity conditions a t  the fluid-solid interface 
and a constraint involving a complex impedance matrix a t  the outer surface. The 
solutions were proportional to ei(kz-wt) ,where z is distance along the tube axis, t is time, 
k is the propagation constant and w is the angular frequency. The dispersion equation, 
which relates k and w ,  was derived for the practically important case of a thin-walled 
tube. 

Corresponding to each root k(w) of this equation there is a solution which is called 8 

mode of propagation. I n  I we presented asymptotic formulae for these roots a t  both 
low and high frequencies and numerical solutions at intermediate frequencies for an 
inviscid fluid. We also gave the phase velocity, the group velocity and the ratio of the 
amplitudes of the radial and axial components of the tube wall velocity for each mode. 
Now we shall present similar results for the modes in a viscous fluid and also give their 
impedances and compliances. 

I n  the next section ($2 ) )  we describe the formulation of the problem as given in I, 
introduce the notation and present the dispersion equation. I n  $ 3  we analyse this 
equation for the special case of a rigid tube. I n  $ 4  we analyse it for an unconstrained 
elastic tube. I n  $ 5  we show how the results of $4  can be applied to an unconstrained 
viscoelastic tube. I n  $ 6 we derive transmission-line equations and expressions for the 
impedance and compliance, and analyse these expressions. Graphs of various quantities 
based upon our results are presented throughout the paper. 
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2. The dispersion equation 
Let us consider a circular cylindrical tube of wall thickness h and inner radius a 

composed of a viscoelastic material of density pl ,  complex Young's modulus E and 
complex Poisson ratio CT. The viscous behaviour of this material is accounted for by the 
imaginary parts of E and CT. When E and u are real, the tube material is elastic. Let the 
tube be filled with a viscous fluid of density po, shear and bulk viscosity coefficients ,u 
and p', and sound speed co. We shall treat axially symmetric motions of the tube wall 
and fluid. Therefore we let 6' and 5' respectively denote the longitudinal and radial 
components of the displacement of the tube material, let w' and u' respectively denote 
the longitudinal and radial components of velocity of the fluid, and let p' denote 
the excess pressure in the fluid. 

Now 5' and g' satisfy the equations of viscoelasticity, while u', w' and p' satisfy the 
Navier-Stokes equations. At the inner boundary of the tube wall, the velocity and 
normal stress must be continuous. The outer boundary is assumed to be partially 
constrained. This is represented by requiring the displacement vector to be related to 
the velocity vector by a complex impedance matrix with elements Zij (i,j = 1,2)  
which characterizes the material outside the tube. 

A solution of these equations is the state of rest with the tube material undisplaced, 
so that u' = v' = p' = 5' = 5' = 0. To describe wave propagation we linearize the 
problem around this state of rest and also simplify the equations of motion of the tube 
wall for the case of a thin wall, i.e. h -=g a. Then we introduce the radial co-ordinate r ', 
axial co-ordinate z', time t', angular frequency w' and propagation constant k'. We 
also define the following dimensionless quantities: 

(2.1) i r = r '/a, z = z'/a, t = wet', 5 = c / a ,  6 = 5//a, co = c&'aoo, k = k'a, 
w = o' /wo,  u = u'/aoo, w = w'/awo, 

p = p'/poa2w& Zij = Zij/wo kpl.  
The frequency wo in (2.1) is defined as follows, together with the parameters K ,  4, a, 
a', m, Q and y, which will be needed later: 

~2 = k2-w2(c;-iiW$/a)-l, 

(2.2) J wo = JE/pla2(1 -a2) )4 ,  $ = 1 +a/a', 
31 = poa2wo/p, a' = poa2wo/,u', m = plh/poa,  

52 = E/pl a2( 1 - a2) ws = e - i y .  

In  I we showed that, as t i  consequence of causality, the viscoelastic parameter y lies in 
the range 0 < y < 7 ~ .  

We seek B solution of the linearized equations of motion of the fluid and of the thin- 
walled tube of the form 

(2.3) [p,  u, w, 6, g1 = [Pl(T), U l ( T ) ,  wl(r), 607 501 ei(ke-wt)* 

Here g,, and c0 are constants. We find that p l ,  u1 and w1 are given by 

P l P )  = Po I o ( K T ) ,  
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The boundary conditions at the inner and outer surfaces of the tube wall lead to a 
set of four homogeneous linear algebraic equations for the four constants p, ,  w,, to 
and Q. In  order that these equations have a non-trivial solution, the determinant of 
the coefficient matrix must vanish. This yields a transcendental equation, called the 
dispersion equation, which can be viewed as determining k in terms of w .  It is given by 
equation (56) of I, which has minor errors which resulted from the replacement of the 
factor wk in (55) of I by W K .  The correct dispersion equation is 

Io[(k2 - iaw)! i ]  - I,@) wzm(kzL2 - w2 + Z2,J ( 
m( L2 - w2 + Zll) + i - m(k2L2 - w2 + Z22) 2w1 a 

m(kaQ-iZ, , )  + i  m(kaQ+iZZl)  + i  
a a 

- 11'(k2-iaw)t1 (k2 - iaw)4 [ - I , ( ~ ) & ( d + k  
a 

m(L2 - w2 + Zll) + i m(kZL2 - w2+ ZZ2) 
a 

m(kai2 - iZ12) + i  m(kaL2 +iZ,,) + i  a a 

+w~KI~ (K)  m(L2-w2+Zll)+za = 0. (2.5) ( *20)1 
For each w ,  there are an infinite number of solutions k of (2.5), which occur in pairs 

k k because the equation is even in k. Corresponding to each solution k, there is a 
solution [p , ,  w,, to, c,] of the linear equations, which is determined up to a single 
constant factor. When this solution is used in (2.3) and (2.4) it yields a particular mode 
of oscillation. Those modes for which IIm kl is large decay rapidly with distance along 
the tube, so they are called non-propagating. The modes with I m  k = 0 or IIm kl 
small are the propagating modes, which can carry energy over long distances along 
the tube. In  I we showed that for an inviscid fluid the propagating modes consist of two 
tubemodes, which are the only ones that propagate a t  low frequencies, plus an infinite 
number of acoustic modes, which propagate only a t  high frequencies. 

3. Viscous incompressible fluid in a rigid tube 
The quantity m, defined in (2.2), is half the ratio of the tube mass to the fluid mass 

per unit length of tube. When m-too, (2.5) reduces to the dispersion equation for a 
viscous compressible fluid in a rigid tube, which is 

{ k 2 - w 2 ( ~ ~ - i w ~ / o l ) - ~ } F [ { k 2 - o 2 ( ~ 8 - i w ~ / a ) - ~ } ~ ]  = k2F[(k2-iaw))]. (3.1) 

Here F is defined in terms of Bessel functions by 

F ( x )  = 211(x)/x10(x). (3.2) 

We shall now obtain asymptotic formulae for the roots k of (3.1) in terms of the para- 
meters in (3.1). 
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Let us consider first the low frequency case in which w < 1 with the other parameters 
fixed. To find solutions for which I kl < 1 ,  we use the following expansion of F :  

F(z)  = 1-&2+&~4+O(z6), IzI < 1 .  (3.3) 

k = ( 8 o / a ~ ; ) 4 e * ~ ~ + . . . ,  w < 1.  (3.4) 

Upon using (3.3) in (3.1), retaining the terms of lowest degree in w and k, then solving 
for k, we obtain 

Considering the other parameters shows that (3.4) holds when aw < 1,  w/co 4 1 and 
w/ac ;  Q 1. The result (3.4) is due to Rayleigh (1945, p. 327). 

Next, we suppose that w < 1 but that Ikl is not small. We expand (3.1) for w small 
and retain terms of lowest degree in w ,  which yields 

kF'(k) = 0, w Q 1. (3.5) 

The root k = 0 is spurious, since it violates the hypotheses under which (3.5) was 
derived. To solve (3.5) for I kl large, we use the following asymptotic expansion of F :  

2 
F(z )  = iz tan (iz + fn) 

IzI 9 1,  -&r < argz < #n. (3.6) 
When \Re zI -+m, (3.6) becomes 

2 1 
F(2) = - (sgnRe~)+-+O(z-~) ,  

Z 22 
\Re21 9 1.  (3.7) 

Using (3.6) in (3.5) gives sin (2ik+&) = 2ik+ ... . If Rek $= 1,  this equation sim- 
plifies further to exp (2k - iir) = 4k + . . . . The solutions of this equation are given 
asymptotically by 

kNiJ1og[ (2n+1)2r ]+$ i (2n+l )nr ,  n =  1 , 2  ,..., w < l .  (3.8) 

Re-examination of the above derivation shows that (2.8) is valid if a%;/$ < aw Q lk12. 
Except for the factor of 2 in the denominator of the imaginary part, this result was 
obtained by Fitz-Gerald (1972) and is in excellent agreement with his numerical 
calculation of the first ten roots of (3.5). He has pointed out that the complex conjugate 
of each root of (3.5) is also a root, but that these conjugates are not asymptotic to roots 
of (3.1). However, the negative of each root of (3.1) is also a root, as we explained in I. 

Now we turn to the case aw + 1.  There are two simplifying limits of (3.1) to con- 
sider: when the left side is large and the right side is a perturbation and vice Vera. If 
we neglect the right side of (3.1), we obtain the results 

Here /Iln is the nth positive zero of the Bessel function J1, i.e. Jl(Pl,J = 0. When, in 
addition, w 4 act/$, these become k = w/co + ... and k = (w2/c;-P; , ) ,  + ..., which 
are just the results for an inviscid compressible fluid in a rigid tube. 

To take account of the right side of (3.1), we invoke (3.7) so that F[(k2- iaw) i ]  is 
replaced by 2[wa/(c; - iw$/a) -PIn - iawl-). Then we obtain 
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In deriving (3.10), we used the identity 

F'(2) = 2[ 1 - F(2)] /2  - &zFZ(z). (3.11) 

If the frequency w is not too large, so that w 4 act /$ ,  then (3.9) and (3.10) simplify to 

(3.12) 

k=(wZc,2-p;,)aE1+(-iaw-p;,)-)+ ...I, n =  1 , 2 , 3  ,.... (3.13) 

The result (3.12) was given by Kirchhoff (1868; see also Rayleigh 1945, p. 325). The 
leading term in (3.13) is the inviscid result of I and Redwood (1961), while the correc- 
tion term appears to be new. From (3.12) it  follows that the phane velocity c = w/Re k 
is given by 

c =cO[l-(2aw)-3+ ...I. (3.14) 

Rayleigh (1 945, p. 31 9) attributes this result to Helmholtz. 
On the other hand, if w 4 ac;/@ and $ is not equal to 1,  then (3.9)and (3.10) simplify 

to 

k = wcg1[1+ (aw)-teai" + . . .I ,  

(3.15) 

(3.16) 

When $ = 1 and w % acf/$, ~2 - ka- iaw,  so that the function F [ ( k 2 - i a o ) t ]  is a 
common factor of (3.1). Then the root (3.15) disappears and the second term in (3.16) 
is absent. 

We now consider the left side of (3.1) to be a small perturbation of the right-hand 
side. Then by proceeding as in the derivation of (3.10), we obtain for a w  9 1 and $ =k 1 
the result 

If q5 = 1 ,  the second term above vanishes and this root merges with the root (3.16), 
with no second term. When $ =+ 1 end aw 4 &, (3.17) simplifies to 

k = (am)) efi" [ 1 + i&/2aw + . . .]. (3.18) 

When the fluid is incompressible, we let co+m in (3.1) to obtain 

k2F(k)  = k2F[(k2- iaw)*]. (3.19) 

The roots of this equation can be obtained by letting c0+m in (3.4), which yields 
k = 0, in (3.&), which remains unchanged, in (3.9), which yields k = 0, in (2.10), which 
yields 

k = ipl,[ i + ( - iaw - Bf,)-t + . . .], (3.20) 

and in (3.17), which yields k = (iolw-/3P&)t[l -P;,(iaw-Pf,)-h+ . . . I ,  n = 1,2, ... . 
Numerical solutions of (3.1) have been obtained by Scarton & Rouleau (1973). They 

present curves of Re k and Im k as functions of w/co for the first 32 roots for three 
different values of uc, with $ = 1. A superfluous root k = (iaw)t was introduced in 
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Scarton & Rouleau (1973) because the extra factor (k2-iaw)t  waa included in the 
dispersion equation. The asymptotic formulae in this section are in good agreement 
with their results where they are applicable. For example for n = 1 the exact numerical 
solution and the asymptotic result (3.20) yield the following values: 

for aw = lo4, 1 
1 

- 0.0274864 + 3,858793 [exact] 
- 0-027094 + 3.858803' 

k = (  
[asymptotic from (3 .20)]  

for aw = lo6. 
- 0-00860656 + 3.840273 [exact] 
- 0.00856797 + 3.842083 

k = (  
[asymptotic from (3 .20)]  

The result (3.18) is also in good agreement with our numerical solution of (2 .5)  even 
for relatively small values of m. For example, for m = 0.1, (T = 4, w = 2, Zi, = 0, 
R = 1,  co = co and a = lo4 we find 

99.558 + 100.453 [exact], 
l O O ( 1  +i) [asymptotic from (3.18)J.  

k = (  

4. Viscous incompressible fluid in an unconstrained elastic tube 
To obtain the dispersion equation for a viscous incompressible fluid in an uncon- 

strained elastic tube, we set Zij = 0, SZ = 1 and c,, = co in (2.5).  Upon noting that 
~ ~ + k 2  as co+co, we obtain 

w4{4m+ 2mzkz(P(k)-P[(k2-iaw)t]) + ( 2  +mk2P(k) )F[ (k2-3aw) t ] }  

-w2{4rnk2+ 2k2(F(k) -F[ (k2- iaw)+] )  (m2(k2+ 1 ) - 4 k 2 ~ - ~ + i 2 m w a - ~ )  

+ k2F[(k2- iaw),] ( - 4 m a  + mP(k) - i2wa-l[4 - F(k) ] ) }  
+ 2 k 2 ( F ( k ) - P [ ( k 2 - i a w ) ) ] )  (m2k2(1 -v2)+i2wa-lmk2(1 - 2 a ) )  = 0.  (4 .1)  

We shall first examine this equation when the viscosity is small, so that a % 1.  
Let us begin with very low frequencies, for which a w  < 1. By neglecting terms pro- 

portional to wa-l and k2a-2 in (4 .1 )  and expanding F[(k2-  iaw)a] for aw small, we get 

w4{4m+ [ 2  +mk2F(k) ]F(k ) } -  w2{4mk2+ k2P(k) ( -  4 m v + m F ( k ) ) }  
+ iawk3~'(k)m2(1 - as) 

= i a w 3 ( 2 k ) - ~ ( k )  p [ 2  + mk2( - 2m + ~ ( k ) ) ]  + mk2[2m(i + k2) + 4 a  - ~ ( k ) ] ) .  
(4 .2)  

To find a root of ( 4 . 2 )  which is small, we use ( 3 . 3 )  for P, neglect the right side of (4 .2)  
and neglect the 0 4  term on the left. Then we obtain the result 

( 1 - 2 a ) [ 3 ( 3 - 2 a ) - 2 m ( l - 2 a ) ]  
( 5  - 4 4 2  

+ ...). (4 .3)  k, = 2 (:)* [ 5 - 4 a  ]'eiir (1 +iaw 
m( 1 - a2) 

This is a low frequency result, valid when w is small compared with a-l. 
The leading term in (4 .3)  was given by Morgan & Kiely (1954), who recognized that 

it is valid only for w < 01-1 $ 1 .  We shall show later that the leading term is valid also 
when w < a < 1. It is the viscous analogue of the root denoted by k+ in I. We note that, 
for small w, k, as given by (4 .3)  behaves like w t .  The corresponding inviscid root 
behaves like w ,  so it is not valid near w = 0. The accuracy of (4 .3)  is indicated by the 
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following comparison of the first term in (4.3) with our numerical solution of (4.2) for 
w = a = 102, m = 0-1 and a = 4: 

(8.9443 + 8.94421i) x [exact], 
8-944(1 +i)  x 

For the phase velocity c+, the viscous root (4.3) yields 

k = (  
[asymptotic from (4.3)]. 

c, = w/Re k = (aw)* [m( 1 - a2) /2 (5  - 4a)]* + , . . , (4.4) 

which vanishes a t  w = 0. The inviscid theory yields instead at  w = 0 (I, equation 
(114); see also Atabek & Lew 1966) 

~ ( 0 )  = [Zm(l - a 2 ) ] ~ { 2 + m - k [ ( 2 + m ) 2 - 8 m ( l  -a2)]*)-#. ( 4 . 4 ~ )  

When m is small, ( 4 . 4 ~ )  becomes Young's (1808) velocity 

c+(O) = cp = [am(l -@)I*. (4.4b) 

In dimensional terms, (4.4b) is c i  = (Eh/Zp,a)*. Both ( 4 . 4 ~ )  and (4.4b) differ from the 
value zero given by (4.4) at w = 0 because viscosity is important near w = 0. This is 
clear in figure 1 (a) ,  where c+ is shown as a function of w for various values of the vis- 
cosity parameter a. 

There is another root k- of (4.2) which is proportional to w at low frequencies and 
which appears to have been overlooked in the literature. To find it we assume that 
k = O(w) and retain those terms which are dominant for w small. In  this way we get the 
new result 

+ ...' w e a-1. (4.5) I") 4m+2 iaw 2 - a - m ( 1 - 2 a )  
k- = w (m(5 - 4 a J 4  (1 + 4(2m + 1 )  [ 5 - 4 a  

This root is analogous to the root designated k- in I. The phase velocity of the mode 
(4.5) is, a t  w = 0, 

The velocity (4.6) differs from the inviscid zero-frequency result ( 4 . 4 ~ ) .  When m is 
small, that velocity reduces to Lamb's (1898) result cJ0) = cL = 1, or in dimensional 
form c i  = [E/p,( 1 - @)I*. 

a = 102, m = 0.1 and a = 8 the numerical solution of (4.2) and the 
first, term of (4.5) compare as follows: 

For w = 

2-8284 x - 1.5014 x 10- l l i  [exact], 
2.8284 x + Oi [asymptotic from (4.5)]. 

k = (  

Next we consider low viscosities such that a-1 < 1 and frequencies for which aw 1.  
Then it follows from (3.6) that for (k/ small P[(ka-  iaw)4] is small. By neglecting terms 
of order a-1 and a-2 in (4.1), we can write this equation in the form 

f ( w ,  k) = m-lg(w, k ) F [ ( k z - i a w ) + ] .  (4.7) 

(4.8) 

+2m2(1-a2)k4. (4.9) 

Here f and g are defined by 

( w , k )  f ~ 4 { 4 + 2 m k 2 P ( k ) } - o 2 { 4 k 2 + 2 m ( k ~ +  i ) k z P ( k ) } + 2 m ( l  -a2 )k4P(k) ,  

g(w, k )  5 - w4{2 + mk2P(k) - 2m2k2) + w2{ - 2m2k2(k2 + 1 )  + k2m[ - 4 a  + P(k)] }  
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Since f = 0 is the dispersion equation in the inviscid case, (4.7) can be used to yield 
viscous corrections to the inviscid roots. 

01-1. From (4.7) we find the cor- 
rected roots for the two low frequency tube modes to be 

+ m-lg[w, w/c*(O)] F [ { w 2 c ~ 2 ( 0 )  - im}4]/: [w,  w/c*(O)] + . . ., (4.10) 

with c*(O) given by (4.4.a). By using (3.7) to simplify P, together with the definitions of 

Let us begin with the low frequency case 1 9 w 

0 
k* = 

and g, we can write (4.10) in the following more explicit form: 

where 

(4.11) 

2m2(1- 02) +m(1- 4a- 2m) c:(O) - %$(o) 
2m[2m(1- a 2 )  - (2 +m)c2,(0)] 

A* = 

B* = A* 

9 

(2  -AA)  2741 - a2) + (1 - 4a- 2m) c:(O) - &) 
2m( 1 - a 2 )  - (2  + m) c2,(0) 

When m < 1 in addition to the conditions 1 9 w a-1, (4.11) simplifies to 

I 

+ 1 - 2 a  + ""1 + . . .) . J --[- i l  
4maw 2m 8 

The first and third terms in the result for k, were given by Morgan & Kiely (1 954) and 
the special case a = 0 was given by Witzig (1914). The result fork- is new. From (4.12) 
we obtain 

mu2 2 [ 4 a - 6 f l + 5 " ' ]  +...),\ 
2 

c+ = cp (I -7 - (I -;) (2aw)-4+ - 
8( 2ao)g 

14.1 3) 

When the compressibility is finite, the terms c02 and a2c,/2c$ must be added to these 
expressions for G+ and c- respectively, as was shown in I, equations (1 15). 

Womersley (1 957) emphasized the importance of the dimensonless parameter 
(aw), = a(pl w' /p) t  in the study of pulse wavesinmammalian circulatory systems. We 
see that this occurs in (4.13) and in other formulae, so we shall evaluate it for the human 
aorta. From McDonald (1974) we get the following typical values of the parameters: 
a = 1 - 1  cm, p1 = 1-06 g cm-3, a = 0.5, po = 1 g cm-3, E = 5 x lo6 dyn h/a = 0.1 
and p = 0.04 P. We also choose w' = 27468) s-l, which corresponds to the fundamental 
frequency of the heartbeat, which is about 70 cycles/min. Then we find that m = 0.1, 
wo = 2.3 x 103 s-1, w = 3.2 x 10-3, a = 7.0 x 104 and aw = 220. Thus the conditions 



190 

w B 1, a 9 1, aw 1 and m Q 1 are all well satisfied, so that (4.13) is valid. These 
conditions are also satisfied for the aortas of other large mammals (McDonald 1974). 

These considerations enable us to explain the paradoxical result that Young’s 
inviscid zero-frequency velocity formula (4.4b) fits well the observed pulse wave 
velocities in mammalian aortas, even though it differs significantly from the value 
c = 0 given by the viscous result (4.4) at w = 0. The explanation is that aw is large in 
mammalian aortas, so the zero-frequency result (4.3) is not valid, but (4.13) is instead. 
The leading term in c+ is just cp, the viscous correction is just 2.7 % for the human 
aorta and the correction due to the term tma2 is 0.6 %. The correction term due to 
compressibility is negligible as we see by setting I$, = 1570 m/s, the value for horse 
serum (Goldman & Hueter 1956), since then co2 = 2 x 10-4. For higher harmonics w 
and aw are even larger, so the result (4.13) is all the more accurate. However, for smaller 
arteries aw is smaller because the tube radius is smaller. Then the role of viscosity is 
more important and ultimately Young’s formula becomes invalid. 

Next, we consider high frequencies, w 4 1 , as well as low viscosity, a 9 1. Then if 
k = O(w) ,  (4.7) becomes 

S. I .  Rubinow and J .  3. KeEler 

~ 2 [ 4 m +  2 ~ ~ 2 k 2 ( F ( k ) - P [ ( k 2 - i ~ ~ ) * ] } ]  (w2- k2) = - m w 4 k 2 F ( k ) F [ ( k 2 - i ~ w ) * ] .  
(4.14) 

The right side of (4.14) is small compared with the left side. If the right side is omitted, 
one root of the resulting equation is w = k .  Because of the right side, this root becomes 

1 +...I 
2mw[( 1 - ia/w)* - 11 

’ (4.15) 

We have denoted it by k- because it is the continuation of the root we previously called 
k-. There is another root of (4.14), which is the continuation of k,. It is given approxi- 
mately by (3.18) with 

k- = w[1 +eBff/2m(m)*+ ...I. 
= 0. If a w % 1, (4.15) becomes 

(4.16) 

On the other hand, i f w  % a 9 1, (4.15) becomes instead 

k- = w [ l + i / ~ +  ...I. (4.17) 

The phase velocity for this mode is c- = cL + . . . = 1 + . . . , which is also its value at  
intermediate low frequencies. 

The accuracy of (4.16) is indicated by the following comparisons with our numerical 
solutions of (4.1) for w = 2, a = 104, cr = & and two values of m: 

for rn = 0.1, I 
I 

2-0462 + 0.052892i [exact] 
2.05 + 0.05i k = (  

[asymptotic from (4.16)] 

[exact] 
for m = 10. 

1.9293 + 9.838 x 1 0 3  
2.0 + 5.0 x lo-% 

k = (  
[asymptotic from (4.16)] 

Let us now consider a very viscous fluid, a < 1,  a t  low frequencies, w Q 1.  If 
w < a g 1 and k = O[(w/a)*] ,  then (4.2) becomes 

02P[m( 5 - 45) - 6iw/a] + ~k%[iawm( 1 - cr2) - 2w2( 1 - 2cr)]+ . . . = 0 
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FIG- 1 (a-c). For legend see next page. 

and its root is given by 

w t (5-4a)  a iw  ( 4 - 5 ~ ) ( 2 - a )  
= (2)  [m(l - vz)l e*in (' -= (5 - 4a) (1 - vz) + ...). (4.18) 

We note that the leading term above is the same as the leading term in (4.3), which 
justifies the remark following that equation. 
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FIGURE 1. (a), (c) The non-dimensional phase velocity c+ and (b ) ,  (d )  the imaginary part of the 
propagation constant Im k, are shown as functions of the non-dimensional frequency o for 
waves in an unconstrained thin elastic tube filled with a viscous incompressible fluid. The curves 
are based on numerical solution of (4.1) for various values of the non-dimensional viscosity para- 
meter a ranging from to 00. Other parameter values are c = 0.5 and na = 0.1, which are 
representative of mammalian blood in arteries. The curves labelled 00 represent the inviscid 
result. For a finite, c+ and Im k, approach the origin in accordance with (4.4), (4.3) and (4.5) 
while cJ0) is given by (4.6). For the inviscid curve,.c*(O) are given by (4.40) or (4.4b). For the 
curveslabelled loz, 108 and lo4 (slightly viscous fluid), the values of c+ and Im k, following the 
initial rise from the origin are represented by (4.13) and (4.12), respectively. The behaviour of 
these curves for w > 1 is represented by (3.18) with /lln = 0. The curves labelled 10-1 and lo-* 
(veryviscous fluid) approach the origin in accordance with (4.19) and (4.20). For largefrequencies, 
the curves for c+increase linearlywith o and the curves for Im k, are constant, both in accordance 
with (4.24) for n = 1. 

If w < a < 1 and k = O ( w ) ,  (4.2) becomes 

(4m + 2 )  w4 - o2k2[m(5 - 40.) - i6o/a] + . . . = 0, 
for which a root is 

If instead a 4 w < 1 and k = O[(aw)*], (4.2) yields 

This has the root 
(4m + 2 )  w4 + i6wh-lk8 + . . . = 0. 

k- = [4(2m + 1)]* (aw)*eiin + . . . . 
The corresponding phase velocity is 

c- = [ 6 w / ( 2 m + l ) a ] * +  ... . 
When a 4 1, w < 1 and Ikl $ 1, the dispersion equation (4.1) simplifies to 

(4.19) 

(4.20) 

(4.21) 

(4.22) 
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FIUURE 2. The same quantities representing waves in an unconstrained thin elastic tube filled 
with a viscous incompressible fluid plotted in figure 1 are shown on an enlarged scale that encom- 
passes the frequency range of principal physiological interest. The two dashed lines show, for 
comparison purposes, the effect of viscoelasticity when y = 0.1. 

Because aw < 1, (4 .22)  can be reduced to k 2 [ 4 - ( k 2 + 1 ) F 2 ( k ) ] +  ... = 0 .  Then (3 .6 )  
can be used to  yield 

4k + e2k-jis + . . . = 0.  (4 .23)  
The solutions of (4 .23 )  are 

(4 .24)  k ,  = 4 log (4nn)  +inn + . . . , n = 1 , 2 ,  . . . . 
At high frequencies for which w 9 c c l ,  (4 .1 )  becomes 

k2P(k) [m2u4 + 4w2kZa-2]+ . . . = 0.  (4 .25 )  

The roots of the factor k2F(k) in (4 .25 )  are k = 0 and k = i&, which are given by (3 .12 )  
and (3.13) with co = 00 and aw 9 1.  I n  addition there is the root 

k = &maw+ ... . (4 .26)  

I n  figure 1 we show the quantities c& and Im k* as functions of the frequency w for 
various values of the viscosity parameter a. These curves have been obtained by 
numerical solution of the dispersion equation (4.1 ), The exact numerical solutions 
agree very well with the asymptotic results derived herein, in the frequency domains 
in which they are applicable. In  figure 2 ,  the same quantities arc shown on an enlarged 
scale for the frequency range of principal physiological interest: 0 6 w 6 1 0-2. 

7 PLM 88 
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FIGURES 3 (a-c). For legend see next page. 
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FIQURE 3. (a) c+, ( b )  Im Ic,, (c) c- and (d) Im k- w3. o for waves in an unconstrained thin visco- 
elastic tube filled with a viscous fluid. The parameter values are rn = 0.1, CT = 0.5 and y = 0.1. 
The labels on the curves denote the values of u. 

5. Viscoelastic effects 
When the tube is viscoelastic, the viscoelastic parameter y is not zero and therefore 

Q = e+ is not unity. If we write the dispersion equation (2 .5 )  in the form D = 0, we 
see that D satisfies the following identity, in which Q* = eiy: 

D[k,w2,cX,a-2, zij, Q] = QZD[k, Q*w2, Q*CE, Q*a-2, Q*Zij, 11. (5.1) 

On the right side we have the dispersion function for the elastic case with 02, c& a-2 
and Z i j  each multiplied by Q*. Therefore the solution of D = 0 in the viscoelastic case 
is just the solution k for the elastic case with these replacements. We note that aw, 
a%;, wz/cE and ~2 are unchanged in this process. Therefore all the results of $ 4  hold 
when the appropriate arguments in them have been multiplied by Q*. 

As an example of particular significance for mammalian circulatory systems, let us 
consider the case of an incompressible fluid with a-l< w < 1 and m < 1. This corres- 
ponds to low frequency waves in a fluid of low viscosity in a light tube. With 2, = 0 the 
tube is unconstrained. Then (4.12) applies with w multiplied by Q*t = egiY and aw 
unchanged. The corresponding phase velocities are 

} (5 .2 )  
c+ = c,sec&y[l-$m(r2-(1-&(r)2(2aw)-f(1-tan&y)+ ...I, 

c- = c,sec+y[i + a m ( r 2 - { 1 / 2 m + c ~ ( ~ - ~ c r ) } ( 2 a w ) - t ( l  - tan&y)+ ...I. 
7-2 
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FIGURE 4. The same as figure 2 but for a viscoelastic tube with y = 0.1. 

In  figures 3 (a)-@) graphs of c+, Im k+, c- and I m  k- as functions of w based upon 
direct numerical solution of the dispersion equation (2.5) are shown. Figure 4 displays 
the same quantities in the frequency range of physiological interest for y = 0.1. 

6. Impedance, compliance and wall impedance 
It is often convenient to consider the volume flux Q' = a3woQ of fluid through a 

cross-section of the tube and the average pressure P' = po a2wg P over a cross-section. 
For the solution (2.4) the dimensionless flux Q and the average pressure P are 

Q ( x ,  t )  = 27r w(r) rdr = 277 w0(k2 -iaw)-* Il[(k2- iaw)*] 

- *Oak Il(K)]63i(kz-ut), (6.1) 

!ol 

~ ( z ,  t )  = 2J01p(r) rdr = 2p0 K - ~ I ~ ( K )  ei(k+ut). 

C%(K2 - k2) K 

(6.2) 

Because of their exponential dependence upon z and t ,  these functions satisfy a pair of 
differential equations called transmission-line equations, which can be written in the 
following forms: 

(6.3) 

(6.4) 

P, = -LQt-RQ = -(L-R/iw)Q, = -(R-iwL)Q, 

Q, = -ZSP,-GP = -(d-G/iw)P, = - (G- iwd)P .  

The constants R, L, G and 6 are respectively the hydraulic resistance, the fluid inertia, 
the seepage conductance and the compliance. Since all these quantities may depend 
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FIGURES 5 (a, b) .  For legend see next page. 

w 

upon w ,  it is convenient to combine them into the impedance 2 and the complex com- 
pliance C as follows: 

2 = R-iwL = 121 eiT, 

C = C - G / i w  = ICl eix. 

(6 .5 )  

(6.6) 

Sometimes C is written in terms of the wall impedance 2, and the sound speed in the 
fluid in the form C = m i 2 -  .rr/iwZ,. The dimensional impedances are 

2' = powoa-2Z and 2; = powoZw,  

while the dimensional compliance is C' = C/po w. 
By using (6.1) and (6.2) in (6.3) and (6.4), we can obtain expressions for 2 and 2, in 

terms of the ratiopo/wO. This ratio is determined by the homogeneous linear equations 
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FIGURE 5. The quantities (a) / Z + / ,  ( b )  Y+, ( c )  jC+land (d)~+,defined by (6.5)-(6.8) andassociated 
with the root k,, are shown as functions of the frequency for various values of a for the case of an 
incompressible fluid in an unconst,rained elastic t,ube ( y  = 0). Here m = 0-1, c = 0-5. 
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6. The same quantities as in figure 5 are shown on an enlarged scale in 
range of principal physiological interest. 

the frequency 

for p, ,  w,, to and c, given in I, which follow from the boundary conditions. When these 
equations are used to get this ratio and it is used in the expression (6.5) for 2, the result 
is 

2 = iC;(KZ-kz)F(K) ( n w ) - l { 2 m ( w 2 - k 2 n - 2 2 Z ) + F [ ( k 2 - i a w ) l ]  [w2+2iwk2a-1 
+ mk(kaR + i Z 2 J ] }  
x {2m(w2-  k 2 n - 2 2 2 )  ( P ( K )  - F [ ( k 2 - i a w ) i - J )  + F ( K ) F [ ( k 2 - i a w ) i ]  

x [w2+ 2iwa-l(k2-K2) + m ( k 2 - K 2 ) ( d 2 - i 2 2 1  k-1)]}-1. (6.7) 

Rather than writing out the expression for Z,, we can express it in terms of Z by 
eliminating Q from (6.3) and (6.4) and then using (6.2) for P. This yields 

We can obtain 2, or C from (6.8). Alternatively, if 2, is computed directly from 
(6.4) in the same way as 2 was, then (6.8) can be recognized as the dispersion equation 
( 2 . 5 ) .  

The first transmission-line equation (6.3) is just the equation for the z component of 
momentum of the fluid, while (6.4) is the equation of mass conservation for the fluid. 
To derive (6.4) we denote the dimensionless cross-sectional area of the tube by 

A = n(l +w, 
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FIGURE 7. The quantities 12-1, Y-, IC-I and x+ associated with the root k-, as functions of w for 
various values of a. Other quantities as in figure 5 .  

with the dimensional area A’ = A d .  Then for 5 small, A, = 2;rrtS,. From (2.3),  (2.4) and 
the boundary conditions, 6 can be expressed in terms of P. Then we can write the last 
relation in the form 

If we derive (6.9) in this way, we get an explicit expression for 2,. Next we use the 
continuity equation for the fluid, which is Q, + ;rrco2P, +A, = 0. When (6.9) is used in 
this equation, it becomes (6.4). 

The transmission-line equations (6 .3)  and (6.4) have been given by many other 
authors considering pulsatile blood flow through an artery, with simpler formulae for 
Z and Z, (reviewed in Cox 1969). We shall see that some of them follow from (6.7) and 
(6.8) in limiting cases. Before doing so we note that Z and Z, depend upon w and k, 
and that k must be a root of the dispersion equation. Therefore the values of Z and Z, 
depend upon the mode of propagation corresponding to the root k. We also note that 
the quantities Q and P are both zero for the non-axially symmetric modes, which are 
proportional to eine with n + 0. Therefore the transmission-line equations for these 
modes must be formulated in terms of other quantities proportional to ui and p .  

Let us examine the impedance Z for an incompressible fluid in a rigid tube. To do SO 

we let c0+m and m+oo in (6.7) with K+ kand c ~ ( K ~  - k2) + - w2, One of the roots of the 
dispersion equation is k = 0, and for this root (6.7) yields 

z= - iw/7r{1 -F[( -iaw)*]}, co = co, m = co, lc = 0. (6.10) 
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as in figure 7 for the viscoelastic case y = 0.1. 
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Now since 2 is finite and k = 0, (6.8) yields 

S. I .  Rubinow and J .  3. Keller 

c=o, z,=m. (6.11) 

The result (6.11) was to be expected in view of (6.9), since A,  = 0 for a rigid tube. If 
aw 3 1, which is the case for an inviscid fluid or for a viscous fluid a t  high frequencies, 
(6.10) simplifies to 

z = -o/n. (6.12) 

Next we shall consider an incompressible fluid in an unconstrained viscoelastic 
tube. I n  this case also co -+ 00, K -+ k, C ; ( K ~  - k2) -+ 03 and in addition Zij = 0. Then (6.7) 
becomes 

= - iwF(k)  2 m ( w z - k 2 Q ) + P [ ( k 2 - i a w ) ~ ] [ w 2 +  2iwk2a-'+mak2Q] 
7 (21,~(w2-k2n)1F(k)-F[(ka-iaw)ll)+I"(k)Fl(lca-iaw)l]w~ 

If a-l < o < 1 and m << 1,  two roots of the dispersion equation are k* as given by 
(4.12) with w multiplied by Cl.4 = etv and with aw unchanged. Then P ( k )  = 1 + O(w2) 
and J"(k2 - iaw)&]  = 2(aw)-tefin - i (aw)- l+  O[(aw)-4]. We denote the corresponding 
values of 2 by Z* and simplify (6.13) to the form 

U ] +...), (6.14) 

t- ... . 
2m[c?(O)- 1 ] + 2 ( a w ) - ~ e ~ i n [ c 2 _ ( 0 ) + m ~ - 2 m A _ ]  

2- = - 
71 2m[c2_(0) - 11 + 2(aw)-t  etin[c%(0) - 2m(A- + c2_(0) - I)]  iwl (6.15) 

From (6.8), since co = co we have Z, = -71Zk-2 and C = k2/iwZ. Upon using (4.12), 
(6.14) and (6.15) in these relations, we get 

i + i (aw)-l  [mcr(4A- - 1) - 4mB- - c?( O)] 

+ i (aw) - l [  - 2m(2B- - 4A- + 1 - c? (0)) - c2_( O ) ]  

c- = iwQ*/c2_(0) z-. (6.17) 

The results (6.11) and (6.16) (with y = 0 and only the leading term retained) have been 
used by Womersley ( 1  957) and Skalak (I  972) in their models of arterial blood flow. 

The quantities [Z+l, Y+, IC+l and x+, which are defined by (6.5)-(6.8) and associated 
with the mode of propagation corresponding to the root k,, are shown as functions of 
the frequency in figures 5(a)-(d) for the case of a viscous incompressible fluid in an 
unconstrained elastic tube. The same quantities and those associated with the root 
k- are shown as functions of the frequency in the physiological range for the elastic 
case in figures 6 and 7 and for the viscoelastic case in figures 8 and 9. 
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